Last week, an American-Israeli company that claims it’s developed proprietary technology to cool the planet announced it had raised $60 million, by far the largest known venture capital round to date for a solar geoengineering startup.
The company, Stardust, says the funding will enable it to develop a system that could be deployed by the start of the next decade, according to Heatmap, which broke the story.
Heat Exchange
MIT Technology Review’s guest opinion series, offering expert commentary on legal, political and regulatory issues related to climate change and clean energy. You can read the rest of the pieces here.
As scientists who have worked on the science of solar geoengineering for decades, we have grown increasingly concerned about the emerging efforts to start and fund private companies to build and deploy technologies that could alter the climate of the planet. We also strongly dispute some of the technical claims that certain companies have made about their offerings.
Given the potential power of such tools, the public concerns about them, and the importance of using them responsibly, we argue that they should be studied, evaluated, and developed mainly through publicly coordinated and transparently funded science and engineering efforts. In addition, any decisions about whether or how they should be used should be made through multilateral government discussions, informed by the best available research on the promise and risks of such interventions—not the profit motives of companies or their investors.
The basic idea behind solar geoengineering, or what we now prefer to call sunlight reflection methods (SRM), is that humans might reduce climate change by making the Earth a bit more reflective, partially counteracting the warming caused by the accumulation of greenhouse gases.
There is strong evidence, based on years of climate modeling and analyses by researchers worldwide, that SRM—while not perfect—could significantly and rapidly reduce climate changes and avoid important climate risks. In particular, it could ease the impacts in hot countries that are struggling to adapt.
The goals of doing research into SRM can be diverse: identifying risks as well as finding better methods. But research won’t be useful unless it’s trusted, and trust depends on transparency. That means researchers must be eager to examine pros and cons, committed to following the evidence where it leads, and driven by a sense that research should serve public interests, not be locked up as intellectual property.
In recent years, a handful of for-profit startup companies have emerged that are striving to develop SRM technologies or already trying to market SRM services. That includes Make Sunsets, which sells “cooling credits” for releasing sulfur dioxide in the stratosphere. A new company, Sunscreen, which hasn’t yet been announced, intends to use aerosols in the lower atmosphere to achieve cooling over small areas, purportedly to help farmers or cities deal with extreme heat.
Our strong impression is that people in these companies are driven by the same concerns about climate change that move us in our research. We agree that more research, and more innovation, is needed. However, we do not think startups—which by definition must eventually make money to stay in business—can play a productive role in advancing research on SRM.
Many people already distrust the idea of engineering the atmosphere—at whichever scale—to address climate change, fearing negative side effects, inequitable impacts on different parts of the world, or the prospect that a world expecting such solutions will feel less pressure to address the root causes of climate change.
Adding business interests, profit motives, and rich investors into this situation just creates more cause for concern, complicating the ability of responsible scientists and engineers to carry out the work needed to advance our understanding.
The only way these startups will make money is if someone pays for their services, so there’s a reasonable fear that financial pressures could drive companies to lobby governments or other parties to use such tools. A decision that should be based on objective analysis of risks and benefits would instead be strongly influenced by financial interests and political connections.
The need to raise money or bring in revenue often drives companies to hype the potential or safety of their tools. Indeed, that’s what private companies need to do to attract investors, but it’s not how you build public trust—particularly when the science doesn’t support the claims.
Notably, Stardust says on its website that it has developed novel particles that can be injected into the atmosphere to reflect away more sunlight, asserting that they’re “chemically inert in the stratosphere, and safe for humans and ecosystems.” According to the company, “The particles naturally return to Earth’s surface over time and recycle safely back into the biosphere.”
But it’s nonsense for the company to claim they can make particles that are inert in the stratosphere. Even diamonds, which are extraordinarily nonreactive, would alter stratospheric chemistry. First of all, much of that chemistry depends on highly reactive radicals that react with any solid surface, and second, any particle may become coated by background sulfuric acid in the stratosphere. That could accelerate the loss of the protective ozone layer by spreading that existing sulfuric acid over a larger surface area.
(Stardust didn’t provide a response to an inquiry about the concerns raised in this piece.)
In materials presented to potential investors, which we’ve obtained a copy of, Stardust further claims its particles “improve” on sulfuric acid, which is the most studied material for SRM. But the point of using sulfate for such studies was never that it was perfect, but that its broader climatic and environmental impacts are well understood. That’s because sulfate is widespread on Earth, and there’s an immense body of scientific knowledge about the fate and risks of sulfur that reaches the stratosphere through volcanic eruptions or other means.
If there’s one great lesson of 20th-century environmental science, it’s how crucial it is to understand the ultimate fate of any new material introduced into the environment.
Chlorofluorocarbons and the pesticide DDT both offered safety advantages over competing technologies, but they both broke down into products that accumulated in the environment in unexpected places, causing enormous and unanticipated harms.
The environmental and climate impacts of sulfate aerosols have been studied in many thousands of scientific papers over a century, and this deep well of knowledge greatly reduces the chance of unknown unknowns.
Grandiose claims notwithstanding—and especially considering that Stardust hasn’t disclosed anything about its particles or research process—it would be very difficult to make a pragmatic, risk-informed decision to start SRM efforts with these particles instead of sulfate.
We don’t want to claim that every single answer lies in academia. We’d be fools to not be excited by profit-driven innovation in solar power, EVs, batteries, or other sustainable technologies. But the math for sunlight reflection is just different. Why?
Because the role of private industry was essential in improving the efficiency, driving down the costs, and increasing the market share of renewables and other forms of cleantech. When cost matters and we can easily evaluate the benefits of the product, then competitive, for-profit capitalism can work wonders.
But SRM is already technically feasible and inexpensive, with deployment costs that are negligible compared with the climate damage it averts.
The essential questions of whether or how to use it come down to far thornier societal issues: How can we best balance the risks and benefits? How can we ensure that it’s used in an equitable way? How do we make legitimate decisions about SRM on a planet with such sharp political divisions?
Trust will be the most important single ingredient in making these decisions. And trust is the one product for-profit innovation does not naturally manufacture.
Ultimately, we’re just two researchers. We can’t make investors in these startups do anything differently. Our request is that they think carefully, and beyond the logic of short-term profit. If they believe geoengineering is worth exploring, could it be that their support will make it harder, not easier, to do that?
David Keith is the professor of geophysical sciences at the University of Chicago and founding faculty director of the school’s Climate Systems Engineering Initiative. Daniele Visioni is an assistant professor of earth and atmospheric sciences at Cornell University and head of data for Reflective, a nonprofit that develops tools and provides funding to support solar geoengineering research.

